Recognizing Hand Gestures Using Local Features: A Comparison Study
نویسندگان
چکیده
Interest point approaches that extract local features from images are commonly used in human action recognition field. In this paper, a comparison study is performed in which different interest point approaches are used. Each approach is discussed with its advantages and drawbacks. Common keypoints extractor like scale invariant features transform (SIFT), speeded up robust features (SURF), etc. are used in context to human hand gestures recognition. In human-robot interaction, efficiency is important in any recognition task along with recognition rate. Hence in this work, performance of 8 different versions of keypoints are evaluated in terms of recognition rates along with their robustness and efficiency with respect to time. SIFT features show best recognition results but SURF and maximally stable extremal regions features (MSER) show better efficiency.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملHand Gesture Recognition using Gabor and Radon Transform with Invariant Moment Features
Abstract: In this article we present problem recognizing gestures and signs executed by hands. Gesture recognition is the process by which gestures formed by a user interact with the computer or is the element of the special signs language to convey meaning.We propose a methods for the recognition of hand gestures using Gabor wavelets (GW ), Radon transform (RT ) and texture features for gestur...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016